2014年考試崗位能力指導(dǎo):追及問題
考試崗位能力中經(jīng)常會出現(xiàn)行程問題,而行程問題中的追及問題最為常見,追及問題包括流水行船問題、電梯問題、牛吃草問題以及時鐘問題等,本質(zhì)上來講都屬于消長問題。消長問題是由17世紀偉大的科學(xué)家牛頓提出,最明顯的特征就在于消長二字,因此,題中有長有消,其最終的速度是大速度減去小速度的速度差。例如,追及問題中小速度追趕大速度、牛吃草問題中有草長的速度追趕牛吃的速度、逆水行船中逆向的水速追趕船速,這類問題的解題步驟基本類似,常用的做法是計算速度差。追及問題中所涉及到的公式有:基本公式:路程=速度差×?xí)r間追及問題:追及路程=追擊速度×追及時間=(大速度-小速度)×追及時間逆水行船問題:逆流路程=逆流速度×逆流時間=(船速-水速)×逆流時間隊伍行進問題:隊伍長度=(人速-隊伍速度)×從隊尾到隊頭所需時間電梯運動問題:能看到的電梯級數(shù)=(人速-電梯速度)×逆電梯運動方向運動所需時間牛吃草問題:草場原始草量=(牛的頭數(shù)-每天長出的草量)×天數(shù)然而在考試中,追及問題往往與相遇問題、順水行船、順電梯方向等知識點一同考查,但其思路沒有變化。下面通過幾道例題來加深考生對這類問題的理解。級級級級秒秒秒秒國家軍隊文職考試網(wǎng)()認為,追及問題屬于比較簡單的數(shù)學(xué)運算題,考生們只要在備考中花一定時間去復(fù)習(xí),就一定能將這類題目的分數(shù)拿到手。崗位能力更多解題思路和解題技巧,可參看。
2014年廣東軍隊文職考試崗位能力:“多集合反向構(gòu)造”不復(fù)雜
工程問題是廣東省軍隊文職考試考試的一大要點,也是數(shù)量關(guān)系部分的一個重要章節(jié)??忌鷤冊诮鉀Q工程問題的時候,如果使用傳統(tǒng)的方程法,常常會發(fā)現(xiàn)需要設(shè)置很多的未知數(shù),方程較為復(fù)雜,解決起來效率不高。 我們知道,在工程問題中,主要研究的是工作總量、工作效率以及工作時間這三個量之間的關(guān)系,然而工作總量和工作效率基本不會在題干中出現(xiàn)具體的數(shù)值,基于此,我們大可以使用賦值法來取代傳統(tǒng)的方程法,給工作總量或工作效率賦予一個好算、簡單的數(shù)字,以簡化計算,提高做題效率與正確率。 那么,我們具體該如何在工程問題中使用賦值法呢?下面我們一起來看一道廣東軍隊文職招聘的真題。 (廣東2011-53)有20名工人修筑一段公路,計劃15天完成。
如果每人工作效率不變,那么修完這段公路實際用()。 天天天天 拿到題目后,我們發(fā)現(xiàn),題干中只給出了工作時間以及工作人數(shù),并沒有給出工作總量。如果將工作總量設(shè)為1或者x,都會使方程出現(xiàn)很多分數(shù),不方便計算。此時,我們不妨先不直接考慮工作總量,而從工作效率入手。假設(shè)每名工人每天的工作量為1,那么20人一天的工作量為20。又20人15天完成所有工作,所以可以求出工作總量=20*15=300。 有了工作總量,我們再來考慮題干中的實際情況。20人動工了三天,完成的工作量應(yīng)該為20*3=60。那么還剩300-60=240的工作量由剩下的15人來完成,即工作效率變?yōu)榱?5。需要的工作時間為240/15=16天。
因此,本題答案為A選項。 通過以上這道例題,我們發(fā)現(xiàn),題目中給了時間,并且給了工作人數(shù),我們可以直接用將工作人數(shù)賦值為工作效率,并直接用效率*時間求出工作總量,從而取代設(shè)1、x等方法,使工作總量有一個具體的、好算的、符合題目要求的值,簡化我們的計算過程。 那么,我們再來看一道軍隊文職招聘真題,看看工程類問題的另一種題型如何使用賦值法快速解答。 (廣東2008上-50)要折疊一批紙飛機,若甲單獨折疊要半個小時完成,乙單獨折疊需要45分鐘完成。若兩人一起折,需要多少分鐘完成? 該題與上一題的區(qū)別在于:上一題從側(cè)面給出了工作效率,而本題只給了工作時間,沒有工作效率。 那么對于這種題型我們該如何解決呢?
那么如果工作總量是工作時間的倍數(shù),工作效率也就會成為一個整數(shù),計算也就會相對簡單很多。既然如此,那么我們就將工作總量賦值為甲、乙單獨工作時間的一個公倍數(shù)。甲的工作時間為半小時,為了統(tǒng)一單位,我們將它換算為30分鐘;乙的工作時間為45分鐘,很容易發(fā)現(xiàn)90是這兩個數(shù)的公倍數(shù),所以將工作總量賦值為90??梢苑謩e求出他們的工作效率:甲的效率=90/30=3,乙的效率為90/45=2。那么他們一起工作的總效率為3+2=5,所以一起工作的工作時間=工作總量/工作總效率=90/5=18。 所以,本題的答案為D選項。 以上兩道都是很具有代表性的工程類問題的基礎(chǔ)題型。面對第一類給了時間與效率題型,我們可以直接使用時間*效率得到的值賦值為工作總量,再列式計算。