解放軍文職招聘考試巴比倫的數(shù)學(xué)-解放軍文職人員招聘-軍隊(duì)文職考試-紅師教育
發(fā)布時(shí)間:2017-11-22 19:07:38巴比倫的數(shù)學(xué)巴比倫人和埃及人一樣,是首先對(duì)數(shù)學(xué)的萌芽作出貢獻(xiàn)的民族,對(duì)其原始數(shù)學(xué)內(nèi)容的考證,大部分來(lái)自近百年來(lái)考古研究的結(jié)果.一、記數(shù)法與進(jìn)位制一百多年前,人們發(fā)現(xiàn)巴比倫人是用楔形文字(Cuneiform)來(lái)記數(shù)的.他們是用頭部呈三角形的木筆把字刻寫在軟泥板上,然后,用火燒或曬干使它堅(jiān)如石,以便保存下來(lái)進(jìn)行數(shù)學(xué)知識(shí)交流.由于字的形狀象楔子,所以人們稱為楔形文字.他們用垂直的楔形來(lái)表示1,如 .用末端二個(gè)橫向楔形表示10,如 .用記號(hào) 表示35.用記號(hào) 表示9,后來(lái)簡(jiǎn)化為 .以上可以看出,巴比倫人創(chuàng)建的數(shù)的體系與埃及、羅馬數(shù)字頗為相似.但是,值得我們注意的是巴比倫人已經(jīng)有了位值制的觀念,通常為60進(jìn)制.這種認(rèn)識(shí)的主要根據(jù)是地質(zhì)學(xué)家勞夫特斯(W.K.Loftus)于1854年在森開(kāi)萊(現(xiàn)在的拉山或拉莎)發(fā)掘出漢穆拉比時(shí)代的泥板書,上面記載著一串?dāng)?shù)字,前7個(gè)是1,4,9,16,25,36,49,之后中斷,而在應(yīng)該是64的地方,看到的卻是1 4,其后接著寫出1 21,再后是2 24,直到最后寫的是58 1.這個(gè)數(shù)列只有假定其為60進(jìn)位時(shí),才能很自然接續(xù),即:1 4=60+4=64=82,1 21=60+21=81=92,58 1=58 60+1=3481=592.應(yīng)該指出,巴比倫人的位值制有時(shí)也不甚明確;因?yàn)橥暾奈恢抵朴洈?shù)法,必須有表示零的記號(hào),但在早期的泥板書上尚沒(méi)有發(fā)現(xiàn)零號(hào).例如,(5 6 3)可表示5 602+6 60+3=18363,也可表 下文來(lái)分析、確定.古巴比倫的60進(jìn)位法之產(chǎn)生年代是相當(dāng)久遠(yuǎn)的.但據(jù)有的材料記載,早期的蘇默人是不知道60進(jìn)位制的.從他們所用的數(shù)學(xué)符號(hào)中可以看出,大約在公元前3000年以前,是用以下記號(hào)來(lái)記數(shù)的:1,10,60的記號(hào)是用頭部是圓形的木筆刻成,而1和60的記號(hào)都是半圓形,只是大小不一樣,10的記號(hào)是圓形,600的記號(hào)是10和到了公元前2000年左右,開(kāi)始使用楔形文字,以此又建立一套數(shù)的記號(hào),不妨做如下比較:通過(guò)如上二種數(shù)碼的表示法之比較,不難看出,巴比倫采用60進(jìn)制是很自然的①.二、算術(shù)運(yùn)算由于巴比倫從1到59的數(shù)碼都是以1和10或更多一些數(shù)的記號(hào)為基本記號(hào)結(jié)合而成的,因此,在此范圍內(nèi)的加減法不過(guò)是加上或去掉某種記號(hào)罷了.巴比倫人對(duì)整數(shù)的乘法,采取了 分乘相加 的方法.例如,某數(shù)乘以27,他們先乘20,再乘7,然后把結(jié)果相加,最后得出結(jié)果.他們還造出了一些乘法表.(左邊是巴比倫人的記號(hào),右邊用現(xiàn)代符號(hào)表示)巴比倫人在做整數(shù)除以整數(shù)時(shí),采用了乘以倒數(shù)的方法,并且還造出了倒數(shù)表.巴比倫人研究了數(shù)的平方和開(kāi)平方、立方和開(kāi)立方的問(wèn)題.當(dāng)方根是整數(shù)時(shí),給出了準(zhǔn)確的值.對(duì)于其它方根,由于采用60進(jìn)位制,只能是近似值.并造出了簡(jiǎn)單的平方、平方根、立方、立方根表.巴比倫人也曾給出了求a2+b型的方根近似公式:數(shù)大.到了希臘時(shí)期,著名數(shù)學(xué)家阿基米德(Archi-medes)、海倫(Heron)創(chuàng)造出了平方后比原數(shù)小的近似公式.三、代巴比倫人不但具有數(shù)系和數(shù)字運(yùn)算的一些知識(shí),他們也具有處理一般代數(shù)問(wèn)題的能力.例如:在賽凱萊(Senkereh)出土的古巴比倫(漢穆拉比王朝時(shí)期)的原典AO8862,記載著下面的問(wèn)題:(用現(xiàn)代語(yǔ)言敘述)一塊長(zhǎng)方形土地面積加上長(zhǎng)與寬之差為3.3①(即183),而長(zhǎng)與寬之和為27,這塊地的長(zhǎng)、寬、面積各幾何?(1)古巴比倫人的解法:(按60進(jìn)制計(jì)算)27+3.3=3.302+27=2929 2=14.3014;30 14;30=3.30;153.30;15-3.30=0;150;15的平方根是0;3014;30+0;30=15 (長(zhǎng))14;30-0;30=14因?yàn)樵瓉?lái)是將27加上2,現(xiàn)在應(yīng)從14減2,則寬是14-2= 12故得到,15 12=3.0(面積)15-2=133.0+3=3.讀者可以辨認(rèn),以上例題的解法是從6行到29行之間,是用楔形文字書寫的.(2)如果用現(xiàn)代的列二元一次方程組的方法解,則很簡(jiǎn)便.設(shè)長(zhǎng)為x,寬為y,可列成如下方程組:從AO8862原典的最后一行的結(jié)果看出,x=15,y=12是滿足方程組(1)的解的.在前面解題時(shí),實(shí)際上是用新的寬y"代替原寬y,即:y"=y+2,y=y"-2.使用如上這種代換方法,使問(wèn)題簡(jiǎn)單化了.代換后,可得到新的二元一次方程組:把方程組(2)的第1式加到方程組(1)的第2式,可立刻得出(在原典中,清楚地寫著)27+3.3=3.302+27=29之后,繼續(xù)解方程組(2).從上邊的具體問(wèn)題求解中,我們可以悟出解方程組的一般方法,用現(xiàn)代符號(hào)表示,可謂:其解為:巴比倫人求解的各個(gè)步驟是符合解方程組的一般方法的,但是,他們沒(méi)有給出求解的一般公式.在巴比倫人利用楔形文字撰寫的原典中,也有解一元二次方程的例子.例如:由兩正方形并組成一個(gè)面積為1000,一正方形邊為另一正方形邊的巴比倫人是按如下方法求解的:(用現(xiàn)代符號(hào)表示)設(shè)兩個(gè)正方形邊長(zhǎng)分別為x,y.得到一個(gè)正整數(shù)解為:x=30.以上說(shuō)明巴比倫人在漢穆拉比時(shí)代已經(jīng)掌握了解二元一次和一元二次方程的方法,但仍然是用算術(shù)方法求解.巴比倫人對(duì)簡(jiǎn)單的三次和四次方程也求解過(guò).例如在原典中有這樣的題目:一個(gè)立方體,其體積為長(zhǎng)、寬、高分別為x、y、z,體積為V,實(shí)際上是求解方程組解此方程組,涉及算立方根問(wèn)題,巴比倫人用數(shù)表來(lái)求解(見(jiàn)算術(shù)運(yùn)算部分的數(shù)表).四、幾何在古巴比倫時(shí)期,常常把幾何問(wèn)題化為代數(shù)問(wèn)題來(lái)解決.在他們心目中,幾何似乎不占有重要位置.但是,在20世紀(jì)中葉布爾昂(E.M.Buuins)博士和魯達(dá)(M.Rutten)撰寫的《斯薩數(shù)學(xué)書》(Textes math matiques de Suse,M moiresMission arch ol en lran XXXIV,Paris,1961)中,指出了在斯薩出土的古巴比倫的楔形文字原典中,含有求正多邊形和圓的面積的近似公式,說(shuō)明古巴比倫人對(duì)幾何問(wèn)題也有一定的興趣.例如,在拉爾薩(Larsa)出土的古巴比倫原典VAT8512中,有下面的問(wèn)題(用現(xiàn)代符號(hào)和語(yǔ)言敘述).已知底邊b=30的三角形,由平行于底的直線把其分成兩部分,即高分別為h1、h2的梯形F1和三角形F2,且面積F1-F2=S=7.0 h2-h1=h=20,求割線長(zhǎng)(x).由以上條件,可建立如下關(guān)系式:由圖2.3可知,比例式h2∶h1=x∶(b-x) (5)成立.根據(jù)以上條件,可解出x,即:由上可知,巴比倫人建立的關(guān)于x,h1,h2的關(guān)系式是正確的.但是,還沒(méi)有理由(證據(jù))說(shuō)明以上是一種純粹代數(shù)的推演.?dāng)?shù)學(xué)史家尤伯爾(P.Huber)對(duì)(4)式做了如下解釋(Isis Vol46,p104):如果在三角形一邊加一個(gè)長(zhǎng)為h1+h2的長(zhǎng)方形,拼成一個(gè)上、下底邊長(zhǎng)分別為c和a=c+b的梯形,延長(zhǎng)割線x,把此梯形分成兩部分,如圖2.4其面積差為:(F1-F2)-c(h2-h1)=s-ch.的面積分成二等分z,并給出(參考MKT I,p131)可得到(6)式的證明:按照尤伯爾的解釋,以上的解法思路是幾何學(xué)的思想,而不是代數(shù)的.巴比倫人很早就知道畢達(dá)哥拉斯定理(勾股定理),并能應(yīng)用此定理解決具體的、比較簡(jiǎn)單的問(wèn)題,在古巴比倫的數(shù)學(xué)原典中有記載,并使用了1500年之久,直到賽萊烏科斯王朝時(shí)代(公元前310年以后)的著作中,仍有記載.巴比倫人也會(huì)求棱柱、圓柱、棱臺(tái)、圓臺(tái)的體積,他們用高乘以兩底面積和的一半的方法進(jìn)行計(jì)算.
解放軍文職招聘考試阿拉伯?dāng)?shù)學(xué)-解放軍文職人員招聘-軍隊(duì)文職考試-紅師教育
發(fā)布時(shí)間:2017-11-22 19:24:29阿拉伯?dāng)?shù)學(xué)是指7世紀(jì)伊斯蘭教興起后,崛起于阿拉伯半島,建立在橫跨亞、非、歐三洲的阿拉伯帝國(guó)統(tǒng)治下各民族所開(kāi)創(chuàng)的數(shù)學(xué).通常所謂伊斯蘭國(guó)家的數(shù)學(xué)或中亞細(xì)亞數(shù)學(xué)也是指阿拉伯?dāng)?shù)學(xué).在伊斯蘭國(guó)家里,科學(xué)文化的發(fā)展是許多民族的學(xué)者共同勞動(dòng)的結(jié)果,數(shù)學(xué)也不例外.他們是波斯人、花拉子模人、塔吉克人、希臘人、敘利亞人、摩爾人、猶太人和阿拉伯人,等等.他們大都是伊斯蘭教徒.講到這一時(shí)期這一地區(qū)的數(shù)學(xué),沒(méi)有很恰當(dāng)?shù)脑~語(yǔ)來(lái)表述,由于當(dāng)時(shí)的數(shù)學(xué)著作都是用阿拉伯文撰寫的,一般就統(tǒng)稱為阿拉伯?dāng)?shù)學(xué).上述各民族的學(xué)者有時(shí)也統(tǒng)稱為阿拉伯人.公元6世紀(jì)以前,阿拉伯人過(guò)著游牧部落生活.當(dāng)時(shí)阿拉伯半島盛行多神崇拜,各部落間戰(zhàn)爭(zhēng)連綿不斷.由于東西商路改道,社會(huì)經(jīng)濟(jì)日趨衰落,要求改變這種社會(huì)狀況和實(shí)現(xiàn)政治統(tǒng)一,成為各部落的共同愿望.伊斯蘭教的創(chuàng)始人默罕穆德(Mvhammad,約570 632),出生于阿拉伯半島麥加城的一個(gè)沒(méi)落貴族家庭,早年曾隨商隊(duì)到過(guò)敘利亞等地,后來(lái)回到麥加城經(jīng)商.公元610年,在麥加開(kāi)始創(chuàng)傳以信仰一神為中心的伊斯蘭教.后因遭到多神教徒的反對(duì)和迫害,于公元622年秘密出走麥地那.他在那里組織了一個(gè)接受伊斯蘭教的阿拉伯部落聯(lián)盟,號(hào)召所有伊斯蘭教徒 穆斯林,不分部落,都是兄弟,使各部落的人超越血緣的狹隘界限以共同的信仰為紐帶團(tuán)結(jié)起來(lái).伊斯蘭教就這樣在阿拉伯半島創(chuàng)立并迅速傳播開(kāi)去,成為團(tuán)結(jié)阿拉伯人的一種力量.阿拉伯部落統(tǒng)一后,形成了一個(gè)威勢(shì)很大的軍事力量.在 與異教斗爭(zhēng) 的神圣口號(hào)下,迅速向東方和西方的富饒國(guó)家入侵,并在被征服的國(guó)家里普及了伊斯蘭教.不到一個(gè)世紀(jì),阿拉伯人就占領(lǐng)并統(tǒng)治了幾乎整個(gè)比利牛斯半島、所有地中海沿岸的非洲國(guó)家、近東地區(qū)、高加索和中亞細(xì)亞,形成了一個(gè)橫跨歐、亞、非三洲的強(qiáng)大的阿拉伯帝國(guó).我國(guó)歷史上稱之為大食國(guó).由于哈利發(fā)政權(quán)的對(duì)立斗爭(zhēng),在8世紀(jì)中葉,大食國(guó)分裂為東大食和西大食.東大食的首都是巴格達(dá),西大食的首都是科爾多瓦(Cordova).公元1000年到1300年之間,基督教十字軍東侵,把穆斯林逐出圣地.13世紀(jì)初,成吉思汗率蒙古部隊(duì)西征.13世紀(jì)中葉,成吉思汗之孫旭烈兀再次率兵西征,占領(lǐng)了原來(lái)阿拉伯哈利發(fā)在亞洲的所有領(lǐng)土,創(chuàng)立了伊兒汗國(guó).蒙古人征服了這些伊斯蘭國(guó)家后不久,他們自己也都皈依了伊斯蘭教.到了14、15世紀(jì),在中亞又出現(xiàn)了另一個(gè)蒙古帝國(guó) 帖木耳國(guó).12世紀(jì)末,西班牙人推翻最后一個(gè)摩爾人的統(tǒng)治,阿拉伯人失去了他們?cè)跉W洲的立足點(diǎn).在阿拉伯帝國(guó)的統(tǒng)治下,被征服的民族很快轉(zhuǎn)向伊斯蘭教.同時(shí),阿拉伯語(yǔ)很快成為各國(guó)通行的語(yǔ)言,在知識(shí)界成為學(xué)術(shù)交流的工具.這和中世紀(jì)西方各國(guó)把拉丁語(yǔ)作為通用語(yǔ)言一樣.阿拉伯人和其它民族的人民共同創(chuàng)造了新的、別具一格的文化.當(dāng)時(shí)歐洲正處在漫長(zhǎng)的黑暗時(shí)期,阿拉伯世界的科學(xué)文化卻后來(lái)居上,成為當(dāng)時(shí)的人類科學(xué)文化中心之一.8世紀(jì)中葉至9世紀(jì)初,出現(xiàn)了幾位熱心提倡科學(xué)的哈利發(fā):曼蘇爾(al-Mansur,712 775),阿倫 賴世德(Hārūnar-Rashid, 765 809),馬蒙(al-Mamun, 786 833)等.在他們的大力支持和鼓勵(lì)下,設(shè)立學(xué)校、圖書館和觀象臺(tái).在東阿拉伯形成了以巴格達(dá)為首的學(xué)術(shù)中心.哈利發(fā)馬蒙在巴格達(dá)創(chuàng)辦了著名的 智慧館 (Bayt al-Hikmah).這是自公元前 3世紀(jì)亞歷山大博物館之后最重要的學(xué)術(shù)機(jī)關(guān),除用作翻譯館外,還起到科學(xué)院和公共圖書館的作用,它還附設(shè)一座天文臺(tái).在這里,大量的波斯、希臘和印度的古典著作被系統(tǒng)地譯為阿拉伯文.哈利發(fā)還組織力量對(duì)這些著作進(jìn)行廣泛而深入的研究.就這樣,東西方的文華精華被融合在一起,出現(xiàn)了一個(gè)學(xué)術(shù)繁榮時(shí)期.阿拉伯的數(shù)學(xué)研究就從這里開(kāi)始.從8世紀(jì)起,大約有一個(gè)到一個(gè)半世紀(jì)是阿拉伯?dāng)?shù)學(xué)的翻譯時(shí)期.由于阿拉伯人能夠控制或取得拜占庭帝國(guó)、埃及、敘利亞、波斯及印度諸國(guó)的人才和文化,所以他們得以接觸幾乎所有的古代重要著作.歐幾里得(Euclid,約公元前330 前275)、阿基米德(Archimedes,公元前287 前212)、阿波羅尼奧斯(Apollonius,約公元前262 前190)、海倫(Heron ofAlexandria,約62年)、托勒密(Ptolemy,約100 約170)、丟番圖(Diophantus,250)、以及婆羅摩笈多(Brahmagupta,598 665)等著名學(xué)者的數(shù)學(xué)和天文學(xué)著作都被譯成阿拉伯文.在翻譯過(guò)程中,許多文獻(xiàn)被重新校訂、考證、勘誤、增補(bǔ)和注釋.這樣一來(lái),大量的古代科學(xué)遺產(chǎn)獲得了新生.已經(jīng)荒廢了幾個(gè)世紀(jì)的古代學(xué)者的著作又重新成為人們手頭的教材.當(dāng)古希臘的原著失傳之后,這些阿拉伯文譯本就成為后來(lái)歐洲人了解古希臘數(shù)學(xué)的主要來(lái)源,而許多古希臘時(shí)期的著作也正是通過(guò)它們的阿拉伯文譯本才得以流傳下來(lái).在上述漫長(zhǎng)而有效的翻譯時(shí)期之后,阿拉伯?dāng)?shù)學(xué)出現(xiàn)了一個(gè)創(chuàng)造性的活躍時(shí)期.阿拉伯人不僅繼承了古典科學(xué)遺產(chǎn),而且使之適合自己的特殊需要和思想方法.他們吸取和保存了希臘和印度數(shù)學(xué)的精華,加上他們自己的創(chuàng)造性勞動(dòng),建立起獨(dú)具風(fēng)格的阿拉伯?dāng)?shù)學(xué).他們的貢獻(xiàn)為世界數(shù)學(xué)寶庫(kù)增添了光彩.阿拉伯人引進(jìn)了印度數(shù)字及其記數(shù)法,利用古代數(shù)學(xué)方法廣泛地解決了一系列計(jì)算,特別是天文計(jì)算問(wèn)題.他們的近似計(jì)算達(dá)到了很高的精確度.在代數(shù)學(xué)方面,他們建立了一元二次方程的一般解法,三次方程的幾何解法,并把代數(shù)學(xué)明確地定義為 解方程的科學(xué) .他們的工作為代數(shù)學(xué)的發(fā)展提供了方向.在三角學(xué)方面,他們引進(jìn)了幾種新的三角函數(shù),建立了若干三角公式,制造了大量的三角函數(shù)表.更重要的是,三角學(xué)通過(guò)他們的工作開(kāi)始脫離天文學(xué)而獨(dú)立.阿拉伯人為證明歐幾里得第五公設(shè)作過(guò)多次嘗試,推進(jìn)了平行線理論的研究.阿拉伯的數(shù)學(xué)著作具有自己的風(fēng)格.許多著作十分注意證明的論據(jù),材料的系統(tǒng)安排和敘述的清晰性.大量書籍中都會(huì)見(jiàn)到具有東方民族特點(diǎn)的豐富有趣的例題和習(xí)題,這些問(wèn)題往往具有十分新穎的實(shí)際內(nèi)容.